
Fuzzy logic can make control engineering easier for many types of tasks. It can also add control

where it was previously impractical, as applications such as fuzzy-controlled washing machines

have shown. However, fuzzy control need not be a dramatic departure from conventional

control techniques such as proportional integral derivative (PID) feedback systems. As this

technical brief demonstrates, fuzzy logic can be used to simplify the scheduling of two different

controllers.

Applications of
Fuzzy Logic in Control Design

MATLAB® TECHNICAL COMPUTING BRIEF

ABSTRACT

© 1996 by

The MathWorks, Inc.

All rights reserved.

MATLAB and SIMULINK

are registered trademarks,

and Real-Time Workshop

is a trademark of

The MathWorks, Inc.

Other product or brand

names are trademarks or

registered trademarks of

their respective holders.

THE MATLAB ENVIRONMENT

MATLAB provides a powerful computing environment for control system design, signal process-

ing, modeling, analysis, and algorithm development. Its accurate numeric computation and

built-in visualization make it easy to work with complex systems and data arrays. MATLAB

Toolboxes offer specialized functions and easy-to-use graphical user interface tools that speed up

the solution of application-specific problems. SIMULINK adds an intuitive block-diagram tool to

the MATLAB environment for interactive simulation of nonlinear dynamic systems. With the

Real-Time Workshop™, you can generate portable C code from SIMULINK block diagrams for

rapid prototyping and implementation of real-time systems. The Fuzzy Logic Toolbox draws

upon these capabilities to provide a powerful tool for fuzzy system design, analysis, and simula-

tion. This technical brief describes the use of the Fuzzy Logic Toolbox to solve a typical control

design problem.

FUZZY LOGIC TOOLBOX

The Fuzzy Logic Toolbox for use with MATLAB is a tool for solving problems with fuzzy logic.

Fuzzy logic itself is a valuable engineering tool because it does a good job of trading off between

significance and precision—something that humans have been doing for a very long time.

The Fuzzy Logic Toolbox lets engineers create and edit fuzzy inference systems either by hand,

with interactive graphical tools or command-line functions, or by generating them automatically

with clustering or adaptive neuro-fuzzy techniques. SIMULINK®, the simulation tool that runs

alongside MATLAB, makes it easy to test your fuzzy system in a block diagram simulation envi-

ronment. In addition, Real-Time Workshop™ can generate portable C code from the SIMULINK

environment for use in real-time or non real-time applications.

In this document, we’ll discuss some basic concepts behind fuzzy logic, and then we’ll look at the

implementation of fuzzy logic in a typical control problem.

BASIC CONCEPTS

In fuzzy logic, the truth of any statement is a matter of degree. Any statement can be fuzzy. A mem-

bership function is the curve that defines how true a given statement is for a given input value. It

defines how each point in the input space is mapped to a membership value (or degree of mem-

bership) from 0 and 1.

One of the most commonly used examples of a fuzzy set is the set of tall people. In this case the

input space includes all potential heights, say from 3 feet to 9 feet, and the word “tall” would cor-

respond to a curve that defines the degree to which any person is tall. If the set of tall people is

given the well-defined (crisp) boundary of a classical (non-fuzzy) set, we might say that all people

taller than 6 feet are officially considered tall. But such a distinction doesn’t reflect our experi-

ence. Just as importantly, the example is not as practical or as accurate as it could be. It may make

sense to consider an abstract concept such as the set of all real numbers greater than six, but

when we want to talk about real people, it is unreasonable to call one person short and another

one tall when the difference in height between them is only the width of a hair.

But if the kind of distinction shown in the left diagram of figure 1 is unworkable, then what is the

correct way to define the set of tall people? The right diagram shows a smoothly varying curve that

FUZZY SETS AND

MEMBERSHIP

FUNCTIONS

FUZZY LOGIC TOOLBOX 1

1.0 tall (1.0)

not
tall (0.0)0.0

degree
of

belief

height

1.0

0.0

degree
of

 belief

definitely
tall (.90)

not very
tall (0.30)

height

Figure 1. Left: sharp-edged (non-fuzzy). Right: smooth-edged (fuzzy) membership functions.

passes from not tall to tall. The output-axis indicates the degree of membership in the set of tall peo-

ple, which is a value from 0 and 1. The curve is known as a membership function and the degree of

membership it defines is often given the designation of µ. The curve defines the transition from not

tall to tall. Both people are tall to some degree, but one is significantly taller than the other.

Subjective interpretations and appropriate units are built into fuzzy sets. If I say “She’s tall,” the

membership function “tall” should already take into account whether I’m referring to a six-year-

old girl or a grown woman. Similarly, the units are included in the curve. Certainly it makes no

sense to say “Is she tall in inches or in meters?”

The point of fuzzy logic is to map an input space to an output space, and the primary mechanism

for doing this is a list of “if-then” statements called rules. All rules are evaluated in parallel, so the

order of the rules is unimportant. Before we can build a system that interprets rules, we have to

define all the terms we plan on using and the adjectives that describe them. If we want to talk

about how hot the water in a boiler is, we need to define the range over which the water’s temper-

ature can be expected to vary as well as what we mean by the word hot. The diagram in figure 2 is

a road map for the fuzzy inference process. It shows the general description of a fuzzy inference

process on the left, and a specific fuzzy system (a thermostat problem) on the right.

The idea behind fuzzy inference is to interpret the values in the input vector (like temperature)

and, based on some set of rules, to assign values to the output vector (like fan speed). That’s really

all there is to it. For our thermostat problem, one of the fuzzy “if-then” rules is:

If temperature is hot then fan_speed is high

The “if” part of the rule temperature is hot is called the antecedent or premise, while the “then”

part of the rule fan_speed is high is called the consequent or conclusion. Interpreting an “if-then”

rule involves two distinct steps: evaluating the antecedent (which involves fuzzifying the input),

and applying that result to the consequent (known as implication). In the case of classical binary

logic, “if-then” rules don’t present much difficulty. If the premise is true, then the conclusion is

true. But if we relax the restrictions of binary logic and interpret the antecedent using fuzzy logic,

how does this affect the conclusion? The answer is simple: if the antecedent is true to some

degree, then the consequent is also true to that same degree. In other words

In binary logic: p => q (p and q are either both true or both false)

In fuzzy logic: 0.5 p => 0.5 q (partially true antecedents imply the same degree of

truth in the consequent)

APPLICATION OF

FUZZY RULES TO

CONTROL

Input

Rules

Input
terms
(interpret)

Output
terms
(assign)

Output

Figure 2. Fuzzy inference process (left),
specific fuzzy system (right).

temperature

if temp is cold then fan_speed is off
if temp is cool then fan_speed is low
if temp is hot then fan_speed is high

{cold,
cool,
hot}

{off,
low,
high}

temp
is interpreted as

fan_speed
is assigned to be

fan_speed

MATLAB TECHNICAL COMPUTING BRIEF2

In the example shown in figure 3, we see only one rule—but real-world fuzzy systems may have

many. The outputs of each rule are combined and defuzzified to return the final output of the sys-

tem. In fuzzy logic, multiple rules can be active for the same input value. This means that a few

rules can interpolatively cover a wide operating space, just as a few poles can support a large tent.

As a result, simple fuzzy systems can solve quite complex problems.

AN EXAMPLE FUZZY CONTROLLER

Fuzzy logic control design is somewhat different from conventional control design methods in

that it departs from standard analysis tools such as the Bode frequency response plot and the root

locus diagram. In some cases, it may be appropriate to use an entirely fuzzy-based approach. But

fuzzy logic can also be used in a hybrid approach with conventional control methods, making the

most of both worlds. In this section, we examine how fuzzy logic can simplify gain scheduling

between two different PID controllers.

The system we’ll be looking at here is a simple one: a spring-mass-damper system from Dynamics

101 as illustrated in figure 4. While a basic PID controller will do a fine job of making it behave,

fuzzy logic can provide a convenient way to meet stringent control objectives.

In response to a square wave, we want to move the cart back and forth between points A and B.

Notice that near point B there is a wall, a hard stop that we want to keep the cart away from. On

the other hand, at point A we have considerably more leeway. Let’s also assume we want to con-

serve control power and mechanical wear and tear by using looser, more relaxed control at point

A. The design goal is relaxed control at point A, tight control (specifically, fast response with no

hot

high

If temp is hot then fan_speed = high

then fan_speed = high

food (crisp value)

fan_speed (fuzzy set)

2. Apply
Implication

operator (min)

1. Fuzzify
inputs

µ(temp==hot) = 0 .7

min(0.7, high)

Antecedent Consequent

0.7

0.7

If (0.7)

Figure 3. Implementation of a fuzzy rule.

Spring

Control
Input

Setpoint Setpoint

Cart

BA

Figure 4. The cart system to be controlled.

FUZZY LOGIC TOOLBOX 3

overshoot) at point B. This situation is similar to the operation of a robot arm in an application

where you want precise movement in one position and energy conservation elsewhere.

Because the plant is a simple one, both the precise control and the relaxed control can be imple-

mented with a basic PID controller. But to meet both criteria we need some kind of gain scheduling

to alternate between the two controllers, each of which has gain parameters tuned for its specific

control objective. We can design a fuzzy controller to handle the gain scheduling for us. Let’s start

with the SIMULINK model of the system shown in figure 5.

The cart system is lightly damped. Its dynamics are described in the transfer function block as a

function of the frequency domain variable s:

G(s) = ω2 / (s2 + 2ζωs + ω2)

where the natural frequency ω = 1 rad/sec and the damping is ζ = 0.1.

Let’s assume that we have already specified our gains for both the tightly controlled system and

the loosely controlled one. There are any number of ways to choose these gains, and the ones we

list below aren’t necessarily optimal in any sense.

Tight control: Kp = 60, Ki = 4, Kd = 14

Loose control: Kp = 5, Ki = 1, Kd = 2

The main design constraint we want to guarantee with the tight control is zero overshoot near

setpoint B. On the other hand, the main consideration for the loose control gains is minimizing

the control effort (while providing a small degree of damping). Figure 6 shows the closed-loop

step response for each set of gains.

Kd

Gain2

Signal
Generator

mux 1
Sum1

s +2*zeta*ws+w^22
w^2(s)

Transfer Fcn
PID

Signals

+
+
+

Sum

Kp

Gain

Ki

Gain1
Actual

Position

+

-

Mux

Figure 5. SIMULINK block diagram of cart system with PID controller in place.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (second)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (second)

Figure 6. Left: closed-loop step response with tight control gains. Right: closed-loop step
response with loose control gains.

MATLAB TECHNICAL COMPUTING BRIEF4

The point of this particular example is to show how we can use fuzzy logic to work hand-in-hand

with conventional control. We do this by making use of what is known as Sugeno fuzzy inference

system (named for fuzzy logic pioneer Michio Sugeno) to implement a blend of the two different

PID controllers. First, we need to make sure we have a good understanding of how a Sugeno sys-

tem calculates its outputs. In a Sugeno system, the output membership function is a linear func-

tion of the inputs. The fuzzy rules for a single input/single output system look like this

If input is high, then output = q*input + r

where q is a gain operating on the input and r is a constant. We need to build a Sugeno system

with four inputs: cart position (so we can decide if we are close to point A or point B) and the P,

I, and D signals to which we apply the appropriate gains Kp, Ki, and Kd. (The astute reader may

notice that the P signal is the same thing as the cart position, but we will continue to refer to both

signals for clarity.) Now we can build a rule set with exactly two rules:

1. If cart is near_A then control is loose [so use the gains Kp = 5, Ki = 1, Kd = 2]

2. If cart is near_B then control is tight [so use the gains Kp = 60, Ki = 4, Kd = 14]

The antecedents of these rules (e.g. “if cart is near_A”) depend on the membership function for

the terms “near_A” and “near_B”. The consequents of these rules (e.g. “then control is loose”)

contain the three gains Kp, Ki, and Kd that we’ve calculated ahead of time. One output member-

ship function implements all three gains at once. The system switches between two different con-

trollers, so there are two output membership functions and two rules.

The window shown in figure 7 is the Fuzzy Inference System (FIS) Editor, which we use to create

our inputs and outputs for the fuzzy controller. We are building a four input/one output system,

so we add inputs (cart, prop, int, deriv), and a single output (control action). We’ll specify these

with the Membership Function Editor.

The Membership Function Editor shown in figure 8 is where we define what we mean by the

phrase “cart is near_A.” Point A corresponds to the numerical value 0 and point B corresponds to

the value 1. We have chosen to make a smooth ramp from one to the other. Notice that this

means the statement “cart is near_A” is 100% true when position = 0; it is 50% true when

FUZZY LOGIC TOOLBOX 5

Figure 7. The Fuzzy Inference System Editor in
the Fuzzy Logic Toolbox.

position = 0.5; and it is 0% true when position = 1. The converse is true of the statement “cart is

near_B.”

Once we have built our fuzzy controller using the graphical editors available in the Fuzzy Logic

Toolbox, we save its specification in the MATLAB workspace as a memory-resident variable.

Alternatively, you may use MAT-files to save it to disk. The fuzzy controller is now available to be

used in the Fuzzy Controller block in a SIMULINK diagram.

Figure 9 contains an updated version of our SIMULINK block diagram. Notice that we have

replaced the three PID gains with a fuzzy controller block. Also, we are using the cart position as

an extra input so we can blend between the two sets of gains depending on where the cart is.

s +2*zeta*ws+w^2

w^2(s)

Transfer Fcn1
Fuzzy

Controller

+

-

Sum3
Signal

Generator1

Mux

fuzzy
mux

PID
Signals1

Mux

mux 2 Actual
Position1

2

Figure 9. SIMULINK block diagram of cart system with fuzzy controller in place.

20 22 24 26 28 30 32 34 36 38 40
-1.5

-1

-0.5

0

0.5

1

1.5

Time (second)
Figure 10. Closed-loop response with the gain-scheduling
fuzzy controller.

Figure 8. Fuzzy Logic Toolbox Membership
Function Editor.

MATLAB TECHNICAL COMPUTING BRIEF6

The plot in figure 10 shows the simulation of our system as it responds to a square wave. Notice

that, just as we expected, the control of the cart near point B is tighter and has no overshoot,

while the control is much looser near point A. So the Sugeno fuzzy system has successfully imple-

mented a convenient gain scheduler for us.

In figure 11 we see the surface plot of the fuzzy controller. This is a plot of how the controller’s

output signal changes as a function of the cart’s position and the proportional signal. Where the

3-D shape is mountainous, the control power required is higher and, as expected, corresponds to

the region where the cart position is near point B. So we are looking at a map of the required

control effort. This kind of visualization can be extremely valuable to a control designer, and it is

just one example of the built-in tools available with the Fuzzy Logic Toolbox. Another one of the

tools—the Fuzzy Inference Viewer—lets you examine in great detail every step of the fuzzy infer-

ence process. Together, the ensemble of graphical tools in the Fuzzy Logic Toolbox gives you

enormous flexibility for working with fuzzy systems inside the MATLAB environment.

The gain-scheduling problem in this technical brief demonstrates only one of the practical uses of

fuzzy logic. Fuzzy systems are also useful in pattern recognition, signal processing, and system

modeling applications. Prior to the Fuzzy Logic Toolbox, the principal barrier to broader use of

fuzzy logic was the lack of a software environment that enabled users to easily explore fuzzy logic,

compare it to known methods, and design practical systems that incorporate fuzzy technology.

The Fuzzy Logic Toolbox provides a comprehensive, intuitive software environment that stream-

lines the development of intelligent and adaptive products and processes. In addition to the

Sugeno-style fuzzy system shown in this technical brief, the toolbox supports both conventional

Mamdani fuzzy inferencing and state-of-the-art algorithms such as adaptive neuro-fuzzy learn-

ing and two methods of fuzzy clustering. An in-depth tutorial and demonstrations included with

the software help you learn and apply fundamental concepts and advanced techniques.

The Fuzzy Logic Toolbox complements the advanced control, signal processing, and modeling

techniques already available in MATLAB and the MATLAB Toolboxes. With the addition of

SIMULINK and Real-Time Workshop, the Fuzzy Logic Toolbox offers a comprehensive, open sys-

tem for simulation and code generation.

ADDITIONAL

APPLICATIONS OF

THE FUZZY

LOGIC TOOLBOX

FUZZY LOGIC TOOLBOX 7

Figure 11. Fuzzy Logic Toolbox output
surface viewer.

ADDITIONAL TOOLS AND RESOURCES

The MathWorks offers more than 20 application-specific toolboxes that build on the computa-

tional and graphical capabilities of MATLAB. All MATLAB Toolboxes are implemented in the

high-level MATLAB language so that you can modify the source code for functions, or add your

own. You can easily combine the techniques in all of the toolboxes to design custom solutions for

your specific problems. The MATLAB toolboxes represent the work of some of the world’s top

researchers in their particular fields.

Products of interest to fuzzy logic technology users include:

Control System Toolbox

Automatic control system design and analysis tools, including linear system state-space modeling

Signal Processing Toolbox

Tools for spectral analysis, spectrum estimation, filtering, and specialized DSP operations

Neural Network Toolbox

Design and simulation tools for neural networks and adaptive systems

Optimization Toolbox

Optimization tools for general linear and nonlinear functions

System Identification Toolbox

Signal processing tools for parametric modeling and time-series analysis

Nonlinear Control Design Toolbox

Tools for design of optimal controllers for nonlinear systems

SIMULINK ®

Dynamic system simulation in an intuitive block-diagram environment

Real-Time Workshop™

Generates portable, real-time C code from SIMULINK block diagrams

MATLAB

TOOLBOXES

MATLAB TECHNICAL COMPUTING BRIEF8

The Fuzzy Logic Toolbox provides easy-to-use access to a variety of standard and advanced meth-

ods for designing and implementing fuzzy systems. For in-depth treatment of these topics, con-

sult any of the following references:

Advanced Methods Used in the Fuzzy Logic Toolbox

Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New

York, 1981.

Bonissone, P.P. et. al., “Industrial Applications of Fuzzy Logic at General Electric”. Proceedings of

the IEEE, March 1995, pp.450-465.

Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter

Algorithm,” Proc. of the Ninth National Conf. on Artificial Intelligence (AAAI-91), pp. 762-767,

July 1991.

Jang, J.-S. R., “ANFIS: Adaptive-Network-based Fuzzy Inference Systems,” IEEE Transactions on

Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685, May 1993.

Jang, J.-S. R. and C.-T. Sun, “Neuro-fuzzy modeling and control,” Proceedings of the IEEE, March

1995, pp. 378-406.

Jang, J.-S. R. and C.-T. Sun, “Neuro-Fuzzy and Soft Computing,” 1995, (submitted for

publication).

Jang, J.-S. R.and N. Gulley, “Gain scheduling based fuzzy controller design,” Proc. of the

International Joint Conference of the North American Fuzzy Information Processing Society, Biannual

Conference, the Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint

Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio, Texas, Dec. 1994.

Sugeno, M., “Fuzzy measures and fuzzy integrals: a survey,” (M.M. Gupta, G. N. Saridis, and B.R.

Gaines, editors) Fuzzy Automata and Decision Processes, pp. 89-102, North-Holland, New York, 1977.

Sugeno, M., Industrial applications of fuzzy control, Elsevier Science Pub. Co., 1985.

Background on Classical Fuzzy Logic Methods

Mamdani, E.H. and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic con-

troller,” International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13, 1975.

Wang, L.-X., Adaptive fuzzy systems and control: design and stability analysis, Prentice Hall, 1994.

Zadeh, L.A., “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353, 1965.

Zadeh, L.A., “Outline of a new approach to the analysis of complex systems and decision process-

es,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, No. 1, pp. 28-44, Jan. 1973.

Zadeh, L.A., “The concept of a linguistic variable and its application to approximate reasoning,

Parts 1, 2, and 3,” Information Sciences, 1975, 8:199-249, 8:301-357, 9:43-80

For more information on the MATLAB Toolboxes, a list of papers in the MATLAB Technical

Library, or a list of MATLAB based books, please return the attached reply card or contact your

account representative at The MathWorks, Inc. at (508) 647-7000.

9FUZZY LOGIC TOOLBOX

REFERENCES AND

ADDITIONAL

READING

24 Prime Park Way,
Natick, MA 01760-1500 USA
Tel: (508) 647-7000
Fax: (508) 647-7101
E-mail: info@mathworks.com
http://www.mathworks.com

8340v02 3/96

